What is Cross Battery?

It is an approach that provides evaluators with the means to make systematic, valid, and up-to-date interpretations of intelligence batteries and to augment them with academic ability tests in a way that is consistent with the empirically supported Cattel-Horn-Carrol (CHC) theory of cognitive abilities.

It allows the examiner to conduct assessments that approximate the total range of broad and narrow cognitive abilities more adequately than what is possible with a single intelligence battery.

It also takes into consideration a variety of exclusionary factors that could affect student’s academic performance.
Cross Battery

Cross battery systematically looks at a wide range of broad and narrow cognitive processes including language-based processes (Gc).

Interpretation of strengths and weaknesses is at the cluster (not subtest) level, yielding better reliability.

The seven clusters most commonly used are:
- Comprehension-Knowledge (Gc)
- Fluid Reasoning (Gf)
- Short Term Memory (Gsm)
- Long Term Retrieval (Glr)
- Auditory Processing (Ga)
- Visual Processing (Gv)
- Processing Speed (Gs)

When is Cross Battery Assessment Used?

Whenever the constructs of interest cannot be assessed using a single battery
When there is a need to follow up on inconsistent scores
Comprehensive FIE
Assessment of Specific Learning Disability
Operational SLD Definition- Dual Discrepancy/Consistency

D-There is an unexpected discrepancy between overall cognitive ability and academic achievement in a specific area.

D-There is a discrepancy between overall cognitive ability and a specific deficit in linguistic competence, cognitive processes, or neuropsychological processes.

C-There is consistency between academic and cognitive deficits measured, demonstrated by a logical and empirical relationship that is confirmed with ecological validity.
Definition of Learning Disability

A student with a learning disability is one who:

- (i) Has been determined through a variety of assessment tools and strategies to meet the criteria for a specific learning disability as stated in 34 CFR, §300.8(c)(10), in accordance with the provisions in 34 CFR, §300.307-300.311; and
- (ii) **Does not achieve adequately for the child’s age or meet state-approved grade-level standards** in oral expression, listening comprehension, written expression, basic reading skill, reading fluency skills, reading comprehension, mathematics calculation, or mathematics problem solving when provided appropriate instruction, as indicated by performance on multiple measures such as in-class tests; grade average over time (e.g. six weeks, semester); norm- or criterion-referenced tests; statewide assessments; or a process based on the child’s response to scientific, research-based intervention; and
- (I) **Does not make sufficient progress** when provided a process based on the child’s response to scientific, research-based intervention (as defined in 20 USC, §7801(37)), as indicated by the child’s performance relative to the performance of the child’s peers on repeated, curriculum-based assessments of achievement at reasonable intervals, reflecting student progress during classroom instruction; or
- (II) **Exhibits a pattern of strengths and weaknesses in performance, achievement, or both relative to age, grade-level standards, or intellectual ability**, as indicated by significant variance among specific areas of cognitive function, such as working memory and verbal comprehension, or between specific areas of cognitive function and academic achievement.

Questions to consider- If all questions are answered in the affirmative then **SLD is highly probable.**

- Is a normative academic deficit present that reflects an inability to achieve according to grade-or-age level expectations despite adequate instruction and supplemental intervention?
- Within the student’s profile is there a pattern of strengths and weaknesses in processing? If present, does the pattern occur within an overall profile that is within normal limits?
- Have extraneous factors been ruled out as primary causes for deficits (i.e. attendance, behavior problems, sociological, language, and motivation)?
- Is there a relationship between the cognitive deficit(s) and the academic deficit?
- Have these deficits caused a significant interference with academic performance?
Cross Battery Principles

Principle 1 – Selecting a comprehensive ability battery as the core of the assessment.
- Tests that are most responsive to referral concerns

Principle 2 – Use Norm based composites from a single battery whenever possible to represent broad CHC abilities.
- Use test composites when they are interpretable. Use XBA composites as an alternative when needed.

Cross Battery Principles

Principle 3 – When constructing Broad & Narrow CHC clusters, select tests that have been classified using an acceptable method.
- Use tests that validly measure what you think they measure.

Principle 4 – Use 2 different indicators of a broad ability to create a composite.
- If the core battery selected has only 1 or NO measures of the broad ability, select another test to supplement.
Broad and Narrow CHC Ability Representation on Seven Current Intelligence Batteries

Table 1.4. Broad and Narrow CHC Ability Representation on Seven Current Intelligence Batteries

<table>
<thead>
<tr>
<th>Test</th>
<th>Gf</th>
<th>Gc</th>
<th>Gv</th>
<th>Gw</th>
<th>Gb</th>
<th>Gt</th>
<th>Gs</th>
</tr>
</thead>
<tbody>
<tr>
<td>WISC-IV</td>
<td>Matrix Reasoning (I)</td>
<td>Vocabulary (Vl) Information (K0) Similarities (Vl, GfG) Comprehension (K0) Word Reasoning (Vl, GfG)</td>
<td>Block Design (Vs) Picture Completion (CF, GcK0)</td>
<td>Digit Span (MS, MW) Letter-Number Sequencing (MwF) Arithmetic (MW; Gf; RQ)</td>
<td>Not Measured</td>
<td>Not Measured</td>
<td>Symbol Search (P) Coding (R9) Cancellation (P)</td>
</tr>
<tr>
<td>WAIS-IV</td>
<td>Matrix Reasoning (I)</td>
<td>Vocabulary (Vl) Information (K0) Similarities (Vl, GfG) Comprehension (K0)</td>
<td>Block Design (Vs) Picture Completion (CF, GcK0) Visual Puzzles (Vs)</td>
<td>Digit Span (MS, MW) Letter-Number Sequencing (MwF) Arithmetic (MW; Gf; RQ)</td>
<td>Not Measured</td>
<td>Not Measured</td>
<td>Symbol Search (P) Coding (R9) Cancellation (P)</td>
</tr>
<tr>
<td>WPPSI-IV</td>
<td>Matrix Reasoning (I)</td>
<td>Picture Concepts (Gc K0, GfG) Vocabulary (Vl) Information (K0) Similarities (Vl, GfG) Comprehension (K0)</td>
<td>Block Design (Vs) Object Assembly (ClS) Picture Memory (MV)</td>
<td>Not Measured</td>
<td>Not Measured</td>
<td>Not Measured</td>
<td>Animal Coding (R9) Bug Search (P) Cancellation (P)</td>
</tr>
</tbody>
</table>

(continued)

Rapid Reference 2.5. Representation of Broad CHC Abilities on Selected Cognitive, Achievement and Neuropsychological Batteries (Flanagan, Ortiz, & Alfonso, 2013)

<table>
<thead>
<tr>
<th>Battery</th>
<th>Gf</th>
<th>Gc</th>
<th>Gy</th>
<th>Gsm</th>
<th>Gr</th>
<th>Gs</th>
<th>GsW</th>
<th>Gq</th>
<th>Gsn</th>
<th>Gq</th>
<th>Gp</th>
<th>Gh</th>
</tr>
</thead>
<tbody>
<tr>
<td>WISC-IV</td>
<td>⨿</td>
</tr>
<tr>
<td>WAIS-IV</td>
<td>⨿</td>
</tr>
<tr>
<td>WPPSI-IV</td>
<td>⨿</td>
</tr>
<tr>
<td>WJ III/NU COGS</td>
<td>⨿</td>
</tr>
<tr>
<td>SB5</td>
<td>⨿</td>
</tr>
<tr>
<td>DAS-II</td>
<td>⨿</td>
</tr>
<tr>
<td>KABC-II</td>
<td>⨿</td>
</tr>
<tr>
<td>KTEA-II</td>
<td>⨿</td>
</tr>
<tr>
<td>WIAT-III</td>
<td>⨿</td>
</tr>
<tr>
<td>WJ III/NU ACH</td>
<td>⨿</td>
</tr>
<tr>
<td>NEPSY-II</td>
<td>⨿</td>
</tr>
<tr>
<td>D-KEFS</td>
<td>⨿</td>
</tr>
<tr>
<td>D-NeDB</td>
<td>⨿</td>
</tr>
</tbody>
</table>

Note: "ikhail" = adequate representation; "U" = underrepresented; "—" = not measured. There are four broad CHC abilities not included in this rapid reference (i.e., olfactory abilities [G0], psychomotor speed [GPS], reaction and decision speed [G1], and kinesthetic abilities [Gk]). Gf = Fluid Reasoning; Gc = Comprehension-Knowledge; Gy = Visual Processing; Gsm = Short-term Memory; Gr = Long-term Storage and Retrieval; Gv = Auditory Processing; Gsw = Reading and Writing; Gq = Quantitative Knowledge; Gsk = Domain-specific Knowledge; Gp = Psychomotor Abilities; Gh = Tactile Abilities; WAIS-IV = Wechsler
Cross Battery Principles

Principle 5 – When crossing batteries select tests normed and developed within a few years of one another to reduce the Flynn effect.
 ◦ Flynn effect – The substantial increase in average scores on intelligence tests globally as measured since 1930.
 ◦ All subtests within the XBA software have been normed within 10 years of one another.

Principle 6 – Select tests from the smallest number of batteries to avoid the effects of different norm samples.
 ◦ Minimize unintended errors in measurement & comparison

Cross Battery Principles

Principle 7 – Establish ecological validity for any and all test performance that suggest weakness or deficit.
 ◦ Find evidence of how the weakness manifests in daily living – most likely with academic achievement.
 ◦ Make clear connections between cognitive dysfunction and the educational impact of the dysfunction in classroom performance.
Exclusionary Factors

Vision
Environmental/Economic Factors
Hearing
Cultural/Linguistic Factors
Motor Functioning
Physical/Health Factors
Cognitive and Adaptive Functioning
Instructional Factors
Social-Emotional/Psychological Factors
Let’s Practice

Enabling Macro Settings

1. From the top menu or Office button, click the "Excel Options" button
2. Click on the "Trust Center" option
3. Click on "Trust Center Settings"
4. Click on "Macro Settings"
5. Select "Enable all macros (not recommended; potentially dangerous code can run)" and click "OK" to exit.

These are general instructions for macro settings and the actual steps may vary based on your particular version of Excel. Please refer to the help menu in Excel for guidance on adjusting macros and security settings if these steps do not seem to apply.
Cross Battery Step by Step

1. Once you have determined language proficiency and know enough about the student’s background select a cognitive battery that is appropriate for the student.

2. Identify broad abilities that are/are not measured by the selected battery
 - Each of the narrow abilities represented in the cluster must be qualitatively different.

3. Identify narrow abilities that are/are not measured by the battery
 - When referrals are specific to reading, math, and written language, the narrows that best measure these should be utilized.
Steps cont’d

4. Administer and Score selected Battery and Supplemental Test
 - All subtests must be administered following the assessment procedures

5. Determine if the cluster scores a cohesive
 - Composite Cohesion is based on:
 - The magnitude of the Standard Deviation score difference
 - Options:
 - Input the scores into the either the XBA Analyzer or the Data Organizer depending on whether or not you need to follow up on the cluster score
 - Use the information given to determine whether clusters are cohesive
 - Keep in mind: the Broad Ability Composite must be considered COHESIVE to be a likely indicator of the abilities it represents
 - Check off the subtests that need to be moved to the XBA Analyzer
 - Click on the blue button “Transfer to Data Organizer” if you do not need to follow up on the scores
Steps cont’s

6. If there is any clusters that yielded non cohesive scores
 ◦ Follow up on the lower score, by giving another measure of that narrow ability
 ◦ If the third score obtained forms a cohesive score with the lower narrow ability, then a Narrow Ability Composite can be reported

7. Once all your scores are cohesive then input them into the Culture-Language Interpretive Matrix (C-LIM v2.0)---for bilingual students
Interpretation of Broad CHC Ability

Broad Ability Constructs are represented by at least 2 qualitatively different narrow subtests

The Broad Ability Composite must be considered COHESIVE to be a likely indicator of the abilities it represents.

Composite Cohesion can be calculated from 2, 3, or 4, subtests entered.

Composite Cohesion is based on
- The magnitude of the Standard Deviation score difference
- The rarity of the difference that occurred

Narrow CHC Ability Interpretation

Occurs when a Non-Cohesive Broad Ability is obtained & the examiner chooses to follow up on the lower score, by giving another measure of that narrow ability

If the third score obtained forms a cohesive score with the lower narrow ability, then a Narrow Ability Composite can be reported.

The Divergent score is considered a relative strength
Cohesion

Cohesion asks two primary questions: Is the variability between the subtests making up the composite significant or substantial? (more than 2/3 SD 10 points)

Is the variability between the subtests making up the composite infrequent or uncommon? (occurs in less than 10% of the population)
Achievement

Assess using a battery that is appropriate for the student

Assess in the student’s dominant language

If the student speaks more than one language assess in both languages if possible

Use multiple sources of data to determine achievement weaknesses

- Previous evaluation
- Work Samples
- Error Analysis
- Parent/Teacher/Student report
- Intervention Data
- Additional Testing
Pattern of Strengths and Weaknesses

8. Once you have determined that the students’ cognitive scores are valid using the XBA Analyzer for those scores that needed follow up
 ◦ and once all achievement assessments have been administered, then the scores can be transferred to the Data Organizer
 ◦ Select Sufficiency in the Data Organizer (strength or weakness) for all scores including cognitive and achievement scores
 ◦ Proceed to PSW!
 ◦ g-Value will show green, yellow, or red
 ◦ The g-value remains an indication of the likelihood that the individual has at least average overall ability to think and reason.
 ◦ the PSW will give you an Facilitating Cognitive Composite (FCC)
 ◦ provides an estimate of overall intellectual ability. It is similar to a full scale IQ score...BUT it is the aggregate of ONLY the intact cognitive abilities measured, factoring out the potential negative impact of the identified weaknesses.
 ◦ and a Inhibiting Cognitive Composite (ICC)
 ◦ the ICC is an aggregate of the abilities that were judged by the evaluator to be “weaknesses” for the individual
Cross-Battery Assessment Software System (X-BASS® v1.0)

XBA Score Summary and Data Organizer

Cross-Battery Assessment Software System (X-BASS® v1.0)

Conception/Authoring: D.P. Flanagan, S.S. Ortiz, V.C. Alfonso, Programming by S.G. Ortiz and A.M. Ojeda

Copyright © 2015 Sammar D. Ortiz, Daniel P. Flanagan & Vincent C. Alfonso. All Rights Reserved.

Name: [Name]

Date: 7/28/2015

Guidelines for Selecting Best Composite Scores for SLD Evaluation

The purpose of this tab is to organize composite and subtest scores for the selection of the best composite scores for evaluation. The pattern of strengths and weaknesses in the risk domains can be identified and compared to the normative data provided in the DSM-5 and other relevant sources. This tab also provides a summary of the test battery and the skills that were assessed. The test battery includes a variety of cognitive abilities, academic areas, and selected neuropsychological domains. Use this tab to select the composite and subtest scores for evaluation. For more information on how to select the best scores for SLD analysis, click the buttons at the top.

GRADE 2 (Reading Skills)

Grow B: Basic Reading Skills (BRS)

- **KTEA-2 Letter and Word Recognition (Score 95)**
 - **Reading Fluency (Score 97)**

Grow C: Reading Comprehension (RC)

- **KTEA-2 Reading Comprehension (Score 87)**
 - **Vocabulary (Score 90)**

Grow D: Reading Fluency (RF)

- **KTEA-2 Reading Fluency (Score 97)**
 - **Reading Comprehension (Score 90)**

GRADE 2 (Math Skills)

Grow B: Math Calculation (MC)

- **KTEA-2 Math Calculation (Score 100)**

Grow C: Math Problem Solving (MPS)

- **KTEA-2 Math Problem Solving (Score 97)**

GRADE 2 (Written Expression)

- **KTEA-2 Written Expression (Score 97)**

GRADE 2 (Oral Expression)

- **KTEA-2 Oral Expression (Score 97)**

Guidelines for Selecting Best Composite Scores for SLD Evaluation

The purpose of this tab is to organize composite and subtest scores for the selection of the best composite scores for evaluation. The pattern of strengths and weaknesses in the risk domains can be identified and compared to the normative data provided in the DSM-5 and other relevant sources. This tab also provides a summary of the test battery and the skills that were assessed. The test battery includes a variety of cognitive abilities, academic areas, and selected neuropsychological domains. Use this tab to select the composite and subtest scores for evaluation. For more information on how to select the best scores for SLD analysis, click the buttons at the top.
Cross-Battery Assessment Software System (X-BASS® v1.0)

Strengths and Weaknesses Indicator

Name: [Redacted]

Date: 7/28/2015

Determination of Strengths and Weaknesses

Indicate whether the 3C domains are highlighted in blue and neuropsychological domains highlighted in beige represent strengths or weaknesses for the individual. Domain selection of strengths and weaknesses is a judgment that is made by the evaluator based on what is known about the examinee. Supra-normal ability and preserving strengths facilitate learning and academic performance, whereas weaknesses inhibit learning and academic performance. Typically, scores that fall in the average range or higher likely facilitate learning and scores that fall below average or lower likely inhibit learning. Also, indicate whether the examinee is highlighted in blue to represent strengths or weaknesses for the individual. Achievement standard scores that are about 80 or higher are considered strengths and scores that fall below 80 are considered weaknesses.

<table>
<thead>
<tr>
<th>Domain</th>
<th>Score</th>
<th>Strength</th>
<th>Weakness</th>
</tr>
</thead>
<tbody>
<tr>
<td>C C R Y S T A L L I Z E D I N T E L L I G E N C E (C I)</td>
<td>74</td>
<td>Strength</td>
<td>Weakness</td>
</tr>
<tr>
<td>F L U I D R E A C H I N G (F R)</td>
<td>91</td>
<td>Strength</td>
<td>Weakness</td>
</tr>
<tr>
<td>L O N G T E R M S T O R A G E A N D R E T R E I V E L (L S R)</td>
<td>84</td>
<td>Strength</td>
<td>Weakness</td>
</tr>
<tr>
<td>S H O R T T E R M M E M O R Y (S T M)</td>
<td>85</td>
<td>Strength</td>
<td>Weakness</td>
</tr>
<tr>
<td>V I S U A L P R O C E S S I N G (V P)</td>
<td>97</td>
<td>Strength</td>
<td>Weakness</td>
</tr>
<tr>
<td>A U D I T O R Y P R O C E S S I N G (A P)</td>
<td>97</td>
<td>Strength</td>
<td>Weakness</td>
</tr>
<tr>
<td>P R O C E S S I N G S P E E D (P S)</td>
<td>107</td>
<td>Strength</td>
<td>Weakness</td>
</tr>
<tr>
<td>D O M A I N S P E C I F I C K N O W L E D G E (D S K)</td>
<td>95</td>
<td>Strength</td>
<td>Weakness</td>
</tr>
</tbody>
</table>

Additional Sections

- **Reading Comprehension (RC)**
 - KRc2-2 Reading Comprehension (KRC2-2-RC) Indicated: 79 Strength | Weakness

- **Math Problem Solving (BP)**
 - KRc2-3 Math Computation (KRC2-3-MC) Indicated: 90 Strength | Weakness

- **Oral Expressive (OE)**
 - KRc2-3 Oral Fluency Test Indicated: 97 Strength | Weakness

- **Listening Comprehension (LC)**
 - KRc2-3 Listening Comprehension (KRC2-3-LC) Indicated: 90 Strength | Weakness
Cross-Battery Assessment Software System (X-BASS® v1.0)

PSW-A Data Summary

Conceptualized by D.P. Flanagan, S.G. Ortiz, Y.C. Alfonso, Programming by G.D. Ortiz and A.M. Dunleavy

Copyright © 2006 Samuel G. Ortiz, Dennis P. Flanagan & Vincent C. Alfonso. All Rights Reserved.

<table>
<thead>
<tr>
<th>Area of strength</th>
<th>CHC ABILITY DOMAINS</th>
<th>SCORE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Crystallized Intelligence</td>
<td>AbInt. Comp A</td>
<td>74</td>
</tr>
<tr>
<td>Fluid Intelligence</td>
<td>AbInt. Comp D</td>
<td>97</td>
</tr>
<tr>
<td>Long Term Storage and Retrieval</td>
<td>AbInt. Comp C</td>
<td>94</td>
</tr>
<tr>
<td>Working Memory Index</td>
<td>AbInt. Comp B</td>
<td>96</td>
</tr>
</tbody>
</table>

Achievement/SLD Domains

<table>
<thead>
<tr>
<th>Area of weakness</th>
<th>KTEA-3 Subtest</th>
<th>Score</th>
</tr>
</thead>
<tbody>
<tr>
<td>Written Language</td>
<td>KTEA-3 Written Language Test Comp</td>
<td>90</td>
</tr>
<tr>
<td>Math Computation</td>
<td>KTEA-3 Math Computation (MI,SqA3) Subtest</td>
<td>105</td>
</tr>
<tr>
<td>Math Concepts & Applications</td>
<td>KTEA-3 Math Concepts & Application (MPS,SqA3,XRMP,DFE) Subtest</td>
<td>90</td>
</tr>
<tr>
<td>Oral Fluency</td>
<td>KTEA-3 Oral Fluency Test Comp</td>
<td>97</td>
</tr>
<tr>
<td>Listening Comprehension</td>
<td>KTEA-3 Listening Comprehension (LC,Sci.S) Subtest</td>
<td>98</td>
</tr>
</tbody>
</table>
Determine SLD or not

It’s important to understand that if:

◦ A student did not respond well to quality instruction/interventions
◦ The inclusionary PSW criteria are met and
◦ Exclusionary factors are ruled out as the PRIMARY cause of academic deficits

Then student might have a specific learning disability

Questions to consider- If all questions are answered in the affirmative then SLD is highly probable.

◦ Is a normative academic deficit present that reflects an inability to achieve according to grade-or-age level expectations despite adequate instruction and supplemental intervention?
◦ Within the student’s profile is there a pattern of strengths and weaknesses in processing? If present, does the pattern occur within an overall profile that is within normal limits?
◦ Have extraneous factors been ruled out as primary causes for deficits (i.e. attendance, behavior problems, sociological, language, and motivation)?
◦ Is there a relationship between the cognitive deficit(s) and the academic deficit?
◦ Have these deficits caused a significant interference with academic performance?
Think about...

Determine whether the identified condition of SLD actually impairs academic functioning to such an extent that special education services are necessary.

Caution: If a test is not included, there’s a good reason!

1. Normed or published before 2001
2. Year of normative data was gathered was not reported.
 ◦ Test not normed in the U.S.
 ◦ Test did not include age-based norms.
 ◦ Test was not norm referenced or provide normative scores (standard, scaled, etc.)
Independent Practice

• Open the software
• Use the Score Report provided to you to go through all the steps
• Work by yourself or with a partner
• Decide which third subtest you need to give for the child and the score
• Let me know when you have questions

Brenda de la Garza
(956)984-6202
(956)266-0250
blyne@esc1.net